Calculated Bond Lengths in Some Cyclic Compounds. Part II.* Benzanthrone, Acedianthrone, and Flavanthrone.

By T. H. Goodwin.

[Reprint Order No. 5901.]

Abstract

With the help of the methods developed in Part I the energy levels, bond orders, and bond lengths in benzanthrone, acedianthrone, and flavanthrone have been deduced by the molecular-orbital method. Bond orders and bond lengths in benzanthrone have also been derived by the two simple valence-bond approximations of the previous paper. For the second and the third compound the observed and the calculated interatomic distances agree very satisfactorily within the experimental uncertainty except for a very few bonds. The crystallographic examination of benzanthrone is not yet complete but the present calculations have been used in suggesting refinements.

In this paper the methods of calculation developed in Part I have been applied to benzanthrone (I), acedianthrone (IV), and flavanthrone (V). Experimental and calculated bond lengths have already been compared for acedianthrone by Friedlander, Goodwin, and Robertson (Acta Cryst., 1954, 7, 127) without noting the assumed parameters or the energy levels, the bond orders or the electron distribution. For flavanthrone the crystal structure has been described by Stadler (ibid., 1953, 6, 540). The crystallographic examination of benzanthrone is not yet complete but the present calculations have already been of assistance in the refinement of the projection along one axis.

Benzanthrone

Molecular-orbital Method.-The secular equations of benzanthrone (I), $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}$, with its eighteen π-electrons, were set up in the ordinary way using the following parameters : Coulomb integrals for carbon $=\alpha$, for oxygen $=\alpha+\beta$; exchange integrals between neigh-

(Ia) (Numbering used for mathematical calculations.)

(Ib) (Numbering based on anthracene)

(Ic) (Ring Index No. 2812.)
bouring carbon atoms $=\beta$, between neighbouring C and O atoms $=2 \beta$, between all other pairs of atoms $=0$; overlap integrals $=0$. They lead to an eighteenth-order secular determinant which cannot readily be factorised but which, when treated by the methods indicated in Part I, yields first the energy levels E_{i} listed in Table 1, then the electron distri-

Table 1. Molecular-orbital energy levels for benzanthrone in order of increasing energy.

i	E_{i}	i	E_{i}	i	E_{i}	i	E_{i}
1	$\alpha+2.9928 \beta$	6	$\alpha+\beta$	11	$\alpha-0.8693 \beta$	15	$\alpha-1.5718 \beta$
2	$\alpha+2.3125 \beta$	7	$\alpha+\beta$	12	$\alpha-\beta$	16	$\alpha-1.9654 \beta$
3	$\alpha+2.0439 \beta$	8	$\alpha+\beta$	13	$\alpha-\beta$	17	$\alpha-2.1270 \beta$
4	$\alpha+1.6212 \beta$	9	$\alpha+0.5534 \beta$	14	$\alpha-1.3446 \beta$	18	$\alpha-2.6523 \beta$
5	$\alpha+1.40349 \beta$	10	$\alpha-0.3968 \beta$				

bution (q) noted in Table 2, and finally the bond orders (p_{12}) and the bond lengths L_{1} and L_{2} of Table 3. The values L_{1} and L_{2} were derived from the correlation curves $D G B E$ and $D Q C E$ forming Fig. 1 of Part I.

Valence-bond Methods.-Again, by using techniques described in Part I, the bond orders

[^0]p_{3} and p_{4} were evaluated by valence-bond approximations and the corresponding bond lengths L_{3} and L_{4} were obtained from the curves of Fig. 2 of that reference. These results have also been included in Table 3.

Table 2. Electron distribution (q) in benzanthrone (molecular-orbital method).

Atom, numbered according to :				Atom, numbered according to :				Atom, numbered according to :			
(Ia)	(Ib)	(Ic)	q	(Ia)	(Ib)	(Ic)	q	(Ia)	(Ib)	(Ic)	q
1	5	8	0.973	7	14	$11 c$	0.991	13	13	3	0.978
2	6	9	1.002	8	15	$6 a$	1.032	14	12	2	0.998
3	7	10	0.979	9	4	6	0.964	15	11	1	0.967
4	8	11	0.992	10	3	5	1.010	16	9	$11 b$	0.986
5	17	$11 a$	0.960	11	2	4	0.967	17	10	7	$0 \cdot 830$
6	16	$7 a$	1.024	12	1	$3 a$	1.001	18*	O	O	1.345
* Oxygen.											

Table 3. Mobile bond orders (p) and bond lengths (L) in benzanthrone.

Bond, numbered according to :			Molecular-orbital method			Valence-bond methods							
			Method 1	Method 2									
(Ia)	(Ib)	(Ic)				p_{12}	L_{1}	L_{2}		p_{3}	L_{3}	p_{4}	L_{4}
1-2	5-6	8-9	$0 \cdot 668$	1.390	1.386	7			0.50	1.379			
1-6	5-16	$7 a-8$	0.638	$1 \cdot 397$	$1 \cdot 394$				0.44	1.387			
2-3	6-7	9-10	0.649	1.394	$1 \cdot 391$)	0.50	1.39	$0 \cdot 43$	1.389			
3-4	7-8	10-11	0.673	1.389	1.384	\}	$0 \cdot 50$	$1 \cdot 39$	0.52	$1 \cdot 377$			
4-5	8-17	11-11a	$0 \cdot 600$	1.404	$1 \cdot 406$				0.41	1.391			
5-6	16-17	$7 a-11 a$	0.573	$1 \cdot 411$	1.416	J			$0 \cdot 35$	$1 \cdot 403$			
5-16	9-17	$11 a-11 b$	0.372	1.454	1.479	,	0		$0 \cdot 13$	1.468			
6-17	10-16	7-7a	$0 \cdot 321$	1.463	1.484	,	0	$1 \cdot 50$	0	1.50			
7-8	14-15	$6 a-11 c$	0.561	1.413	1.420				0.39	1.395			
7-12	1-14	$3 a-11 c$	0.533	1.420	$1 \cdot 431$		0.33	1.42	$0 \cdot 17$	$1 \cdot 455$			
7-16	9-14	$11 b-11 c$	0.507	1.426	1.440				$0 \cdot 31$	$1 \cdot 413$			
8-9	4-15	6-6a	0.684	1.387	1.381	J	$0 \cdot 67$	1.37	$0 \cdot 46$	1.384			
8-17	10-15	$6 \mathrm{a}-7$	$0 \cdot 303$	1.466	1.486		0	1.50	0	1.50			
9-10	3-4	5-6	$0 \cdot 627$	1.399	1.397		0.33	1.42	0.41	1.391			
10-11	2-3	4-5	$0 \cdot 723$	1.379	1.374		$0 \cdot 67$	$1 \cdot 37$	$0 \cdot 48$	1.382			
11-12	1-2	3a-4	0.558	1.414	$1 \cdot 421$)			$0 \cdot 35$	$1 \cdot 403$			
12-13	1-13	3-3a	0.551	1.416	1.423	\}	0.33	$1 \cdot 42$	$0 \cdot 41$	1.391			
13-14	12-13	2-3	$0 \cdot 709$	1.382	1.376		0.67	$1 \cdot 37$	0.43	1.389			
14-15	11-12	1-2	$0 \cdot 616$	1.401	$1 \cdot 400$		$0 \cdot 33$	$1 \cdot 42$	$0 \cdot 46$	1.384			
15-16	9-11	1-11b	0.642	1.395	1.392		$0 \cdot 67$	$1 \cdot 37$	$0 \cdot 41$	$1 \cdot 391$			
17-18*	10-O	7-O	0.884	$1 \cdot 188$	1-188		$1 \cdot 00$	$1 \cdot 185$	$1 \cdot 00$	1-185			
* Oxygen.													

Discussion.-The discussion of accuracies in the preceding paper (p. 1688) shows that the molecular-orbital calculation of bond length ought to be accurate to $\pm 0.03 \AA$, except perhaps for the bonds attached to carbonyl carbon. Three decimal places are given for bond orders and bond lengths simply to permit their more accurate use in subsequent work.

For benzanthrone the results obtained by the molecular-orbital method (either curve : the figures quoted below refer to $D Q C E$) may be regarded as satisfactory pending completion of X-ray measurements. The bonds $5-16,6-17$, and $8-17$, which are all single bonds on the first valence-bond approximation, are found to be $1 \cdot 479,1 \cdot 484$, and $1 \cdot 486 \AA$ respectively. These are greater than the characteristic length of $c a .1 \cdot 39 \AA$ found in aromatic compounds and shorter than pure single bonds, but virtually identical with the 1-2 bond in p-benzoquinone (see Part I, p. 1686). These results therefore represent an acceptable compromise between the wholly aromatic character of the compound and the general importance of structures of the Kekulé type in explaining the properties of condensed ring compounds.
(II)

(Bond symbolism used in the discussion.)
(III)

Bonds 5-6, 7-8, 7-12, and 7-16, the internal bonds, vary from 1.416 to $1 \cdot 440 \AA$, being of the same order as the internal bonds d of naphthalene (II) and anthracene (III). The remaining twelve peripheral bonds vary from 1.374 to $1.423 \AA$ though only three exceed
$1 \cdot 400 \AA$; there is no marked classification into links of the types a, b, and c of naphthalene and anthracene, which show significant differences in the Table in Part I. It is true that there is an alternation in the lengths of the peripheral bonds in the chains between atoms 5 and 6, 8 and 12, and 12 and 16, but the differences are very small and of doubtful significance in view of the coarseness of the fundamental approximations: further, two "long " bonds meet at atom 12 .

There is a marked alternation of electron density from atom 1 to atom 18 (Table 2), thus illustrating the law of alternating polarity pointed out by Coulson and LonguetHiggins (Proc. Roy. Soc., 1947, $A, 192,16$) for hetero-molecules; the sequence of numbering the atoms for the calculations emphasises the alternation. The chemistry, however, does not point to any marked concentration or deficiency of electrons anywhere in the molecule though it seems that anionic and cationic reagents are respectively rather more active at atoms 9 and 13 ; these, however, both appear, from the calculations, to be electrondeficient atoms.

Of the two valence-bond approximations the first is particularly inadequate and the second, though a marked improvement, still suffers from the deficiencies inherent in the method. It was attempted solely to try to circumvent the difficulty that the first, although generally leading to reasonable predictions of order and length, requires that in benzanthrone (and all aromatic quinones) some of the bonds shall be regarded as pure single bonds. It did not seem worth while to attempt the more rigorous full application of the valence-bond method (e.g., Wheland and Pauling, J. Chem. Phys., 1933, 1, 362 ; Sherman, ibid., 1934, 2, 488) to this compound.

The crystallographic examination of benzanthrone has proved unusually difficult but is now well advanced. The calculations given above have been used in carrying out the refinement of the first zone as follows. At a certain stage the atoms were located approximately. There are three characteristic bond directions at 120° to each other in the molecule. The ratios of the projected to the predicted bond lengths in each of these directions were calculated. Three atoms (numbered 10, 16, and 17) were involved in bonds giving anomalous ratios and it was possible to suggest the directions and amounts by which they should be displaced to improve the ratios substantially. These deductions were excellently confirmed by a difference ($\mathrm{F}_{o}-\mathrm{F}_{c}$) synthesis and are now being applied in seeking further refinements.

Acedianthrone

Acedianthrone (IV) has thirty-two r-electrons in a centrosymmetrical molecule; the thirty-second order secular determinant of the molecular-orbital method therefore factorises

(IVa) (Numbering used for mathematical calculations.)

(IVb) (Ring Index No. 3865.)
at once into two sixteenth-order ones according as $c^{i}{ }_{r}= \pm c^{i}{ }_{33-r}$. The values assumed for the various integrals were the same as for benzanthrone and, by using the methods of expansion and solution given in Part I, the energy levels were obtained which are listed in Table 4 in order of increasing energy, the symbols S and A indicating respectively the symmetry and antisymmetry of the molecular orbitals and hence the need for the + and signs relating c_{r}^{i} and c_{33-r}^{i}. Table 5 gives the electron distribution in acedianthrone, while Table 6 gives for the twenty symmetrically independent bonds their mobile orders p_{12}, their lengths L_{1} and L_{2} derived from these by use of the curves $D G B E$ and $D Q C E$ respectively, and their lengths L_{M} measured by Friedlander, Goodwin, and Robertson (loc. cit.)

Table 4. Molecular-orbital energy levels for acedianthrone.

i	Symmetry	E_{i}	i	Symmetry	E_{i}	i	Symmetry	E_{i}
$\mathbf{1}$	S	$\alpha+3.0127 \beta$	$11-14 S, S, A, A$	$\alpha+\beta$	24	A	$\alpha-1.307 \beta$	
2	A	$\alpha+2.9872 \beta$	15	S	$\alpha+0.5334 \beta$	25	S	$\alpha-1.458 \beta$
3	S	$\alpha+2.5613 \beta$	16	A	$\alpha+0.5103 \beta$	26	A	$\alpha-1.810 \beta$
4	A	$\alpha+2.1136 \beta$	17	S	α		27	A
5	A	$\alpha+2.0422 \beta$	18	A	$\alpha-0.598 \beta$	28	S	$\alpha-1.837 \beta$
6	S	$\alpha+2.0180 \beta$	19	S	$\alpha-0.794 \beta$	29	S	$\alpha-2.07 \beta$
7	S	$\alpha+1.6104 \beta$	20	A	$\alpha-0.927 \beta$	30	A	$\alpha-2.27 \beta$
8	A	$\alpha+1.5337 \beta$	21,22	S, A	$\alpha-\beta$	31	A	$\alpha-2.55 \beta$
9	S	$\alpha+1.2216 \beta$	23	S	$\alpha-1.089 \beta$	32	S	$\alpha-2.66 \beta$
10	A	$\alpha+1.1511 \beta$						

Table 5. Electron distribution (q) in acedianthrone (molecular orbital method)

Atom, numbered according to :											
(IVa)	(IVb)	q	(IVa)	(IVb)	q	(IVa)	(1Vb)	q	(IVa)	(IVb)	q
1	3	0.982	5	$5 a$	0.992	9	$8 a$	0.996	13	1	0.979
2	4	0.976	6	6	0.987	10	$16 e$	1.030	14	2	0.989
3	$4 a$	1.016	7	7	0.981	11	$16 c$	0.919	15	$16 b$	1.093
4	5	$0 \cdot 809$	8	8	0.982	12	$16 d$	0.996	16*	O	1.279

Table 6. Mobile bond orders (p) with calculated and measured bond lengths in acedianthrone (molecular-orbital method).
Bond, numbered
according to :

(IVa)	(IVb)	p_{12}	L_{1}	L_{2}	$L_{\text {M }}$	ΔL_{2}
1-2	3-4	$0 \cdot 665$	$1 \cdot 390$	1.387	$1 \cdot 32$	-0.07
1-14	2-3	0.673	1.389	1.384	$1 \cdot 44$	0.06
2-3	4-4a	0.653	$1 \cdot 393$	1.389	1.41	0.02
3-4	$4 a-5$	0.301	$1 \cdot 466$	$1 \cdot 486$	$1 \cdot 40$	-0.09
3-12	$4 a-16 d$	$0 \cdot 579$	$1 \cdot 409$	1.413	$1 \cdot 42$	0.01
4-5	5-5a	$0 \cdot 307$	1.465	$1 \cdot 485$	$1 \cdot 49$	0
4-16 *	5-O	$0 \cdot 862$	1-195	1-195	$1 \cdot 20$	0
5-6	$5 a-6$	0.634	$1 \cdot 397$	1.395	$1 \cdot 41$	0.01
5-10	$5 a-16 e$	0.580	$1 \cdot 409$	1.413	$1 \cdot 37$	-0.04
6-7	6-7	0.654	1.393	1.389	1.35	-0.04
7-8	7-8	0.654	$1 \cdot 393$	1.389	$1 \cdot 38$	-0.01
8-9	8-8a	0.621	$1 \cdot 400$	1.399	$1 \cdot 42$	$0 \cdot 02$
9-10	$8 a-16 e$	$0 \cdot 542$	1.418	$1 \cdot 427$	1.39	-0.04
9-18	$8 a-8 b$	$0 \cdot 396$	$1 \cdot 450$	1.476	1.48	0
10-11	$16 c-16 e$	$0 \cdot 427$	$1 \cdot 443$	$1 \cdot 471$	$1 \cdot 49$	0.02
11-12	$16 c-16 d$	0.442	$1 \cdot 440$	1.467	$1 \cdot 49$	$0 \cdot 02$
11-15	$16 b-16 c$	$0 \cdot 622$	$1 \cdot 400$	1.399	$1 \cdot 41$	0.01
12-13	1-16d	$0 \cdot 608$	$1 \cdot 403$	$1 \cdot 403$	$1 \cdot 41$	0.01
13-14	1-2	$0 \cdot 686$	1.386	1.381	$1 \cdot 30$	-0.08
15-18	$8 b-16 b$	0.507	$1 \cdot 426$	$1 \cdot 440$	$1 \cdot 59$	$0 \cdot 15$
			Oxyg			

who consider them to be subject to an error of $\pm 0 \cdot 06$, owing to the overlap of the molecules in the b-axis projection and to the non-resolution of certain atoms in other projections; $\Delta L_{2}=L_{3}-L_{2}$ is also included. Neither the figures L_{1} nor the values of ΔL are quite the same as those recorded in the above paper in which the calculated lengths were derived from a curve not quite identical with $D G B E$ but $\triangle L$ of that paper is nearly $L_{M}-L_{1}$ of this. As these authors hope to re-examine this compound by X-rays to resolve the rather large discrepancies between a few of the observed and the calculated bond lengths, detailed comment is unnecessary at present. Again the bond lengths ought to be accurate to $\pm 0.03 \AA$ except for $\mathrm{C}-\mathrm{C}$ bonds adjacent to the carbonyl groups. Of the twenty symmetrically independent interatomic distances it is very satisfactory to note that twelve have $|\Delta L|$ not greater than $0.03 \AA$ and that only five have $|\Delta L|$ equal to or greater than the indicated experimental uncertainty of $0.06 \AA$. Three of these are the bonds $2-1,1-14,14-13$, and it is not unreasonable to attribute part of their discrepancies to the failure to resolve atoms 1 and 14,
especially as ΔL is negative for bonds 1-2 and 13-14 but positive for 1-14. Indeed bonds 1-2 and 13-14 are quoted as shorter than pure double bonds so that re-examination of their lengths is certainly called for. A similar remark applies to bond 3-4, which is recorded as being of about average aromatic length as compared with $1.49 \AA$ required by the present calculations and $1.50 \AA$ if regarded as a single bond in accordance with the simplest valencebond approximation. As for bond 15-18, there is no doubt that a little of the discrepancy noted must be due to failure to allow for either a difference in hybridisation or a reduction of overlap in the five-membered rings where not all the angles can have the value of 120° required if maximum overlap of $s p^{2}$ orbitals is to occur. Change of hybridisation cannot be great since the molecule is planar. In chemical language we may say that this portion of the molecule must show strain tending to lengthen the central bond and in so far as the present calculations make no allowance for this they are inadequate. The simple molecular orbital theory used implies that all bonds in which the π-electrons can participate must be shorter than pure single bonds, so that it is difficult to believe that an allowance for strain (change of hybridisation or reduction of overlap) can increase the calculated interatomic distance from 1.44 to $1.53 \AA$, the minimum allowed by the X-ray measurements. Again further discussion must await refinement of the X-ray results and perhaps also of these calculations.

Flavanthrone

Flavanthrone (V) has thirty-two π-electrons in its centrosymmetrical molecule and again the secular determinant factories into two sixteenth-order ones. The values of the various integrals in the secular equations were supposed to be the same as in benzanthrone with the addition of a Coulomb integral for nitrogen of $\alpha+\frac{1}{2} \beta$, the exchange integral between adjacent carbon and nitrogen being set equal to β as between neighbouring carbon atoms.

($\mathrm{V} a$) (Numbering used for mathematical calculations.)

(Vb) (Ring Index No 3887)

On expansion and solution by the methods of Part I, the secular determinant gave first the values recorded in Table 7 for the sixteen lowest energy levels in increasing order of energy then the electron distribution (Table 8) and (Table 9) the bond orders and interatomic distances L_{1} and L_{2}. Also in Table 9 are the interatomic distances L_{M} measured by Stadler (loc. cit.) along with $\Delta L_{2}=L_{M}-L_{2}$.

If only the calculated interatomic distances are considered the same general comments could be made as for benzanthrone (subject to modifications caused by the nitrogen) but it is more useful to compare observed and calculated bond lengths, noting that as before the calculations should not be in error by more than ca. $0.03 \AA$, except perhaps for bonds attached to the keto-groups and for $\mathrm{C}-\mathrm{N}$ bonds. It is then very satisfactory to find that for fifteen of the twenty symmetrically independent bonds $\left|\Delta L_{2}\right| \leqslant 0.03 \AA$. The calculated standard deviation of the observed co-ordinates is $0.032 \AA$, that of the bond lengths is thus $0.05 \AA$; seventeen of the bonds have $|\Delta L| \leqslant 0.05 \AA$. Of the others, bond $1-20$ (equivalent to $13-32$) involves the nitrogen (1 or 32) but even so is remarkably short; however, bond

Table 7. Lowest energy levels in flavanthrone (molecular-orbital method).

Symmetry	E_{i}	i	Symmetry	E_{i}	i	Symmetry	E_{i}
S	$\alpha+3.01149 \beta$	6	A	$\alpha+1.9726 \beta$	11	A	$\alpha+1 \cdot 1120 \beta$
A	$\alpha+2.9849 \beta$	7	A	$\alpha+1.8341 \beta$	12,13	S, A	$\alpha+\beta$
S	$\alpha+2.5532 \beta$	8	S	$\alpha+1.4578 \beta$	14	A	$\alpha+0.8552 \beta$
A	$\alpha+2.22451 \beta$	9	S	$\alpha+1.3170 \beta$	15	S	$\alpha+0.7984 \beta$
S	$\alpha+2.0507 \beta$	10	S	$\alpha+1.2729 \beta$	16	A	$\alpha+0.52748 \beta$

Table 8. Electron distribution (q) in favanthrone.

Atom, numbered		
according to :		
(Va)	(Vb)	q
$1 \dagger$	$13 \dagger$	$1 \cdot 209$
2	$13 a$	0.951
3	14	0.987
4	15	$0 \cdot 964$

Atom, numbered		
according to :		
(Va)	(Vb)	q
5	$15 a$	1.004
6	16	0.813
7	$16 a$	1.003
8	1	$0 \cdot 874$
Oxyg		

Atom, numbered according to :			Atom, numbered according to :		
(Va)	(Vb)	q	(Va)	(Vb)	q
9	2	0.984	13	$4 b$	0.892
10	3	0.984	14	$15 b$	0.993
11	4	0.977	15	$15 c$	$0 \cdot 980$
12	$4 a$	0.992	16*	O	$1 \cdot 290$
\dagger Nitrogen.					

Table 9. Mobile bond orders (p) with calculated and measured bond lengths in flavanthrone (molecular-orbital method).

Bond, n (Va)	ed as: (Vb)	p_{12}	L_{1}	L_{2}	$L_{1 / 2}$	ΔL_{2}
\dagger 1-2	13-13a	0.515	1-374	$1 \cdot 374$	$1 \cdot 37$	0
$\dagger 1-20$	12b-13	$0 \cdot 489$	$1 \cdot 379$	1.379	$1 \cdot 30$	-0.08
2-3	13a-14	0.583	1.408	1.412	1.44	0.03
2-15	$13 a-15 c$	0.515	1.424	1.438	$1 \cdot 43$	-0.01
3-4	14-15	$0 \cdot 682$	1.387	1.382	1.37	-0.01
4-5	15-15a	0.628	1.399	1.397	$1 \cdot 42$	0.02
5-6	15a-16	0.307	1.465	1.485	1.50	0.01
5-14	$15 a-15 b$	0.593	1.406	$1 \cdot 409$	1.33	-0.08
6-7	16-16a	0.303	1.465	1.486	1.54	0.05
6-16 *	16-O	0.866	$1 \cdot 194$	$1 \cdot 194$	$1 \cdot 21$	0.02
7-8	1-16a	0.645	1.395	1.392	1.40	0.01
7-12	$4 a-16 a$	0.585	1.408	1.411	1.40	-0.01
8-9	1-2	$0 \cdot 665$	1.390	1.387	1.36	-0.03
9-10	2-3	0.655	1.392	1.389	1.46	0.07
10-11	3-4	0.675	1.389	1.384	1.41	0.03
11-12	4-4a	$0 \cdot 614$	1.401	$1 \cdot 401$	$1 \cdot 40$	0
12-13	$4 a-4 b$	$0 \cdot 476$	1.433	$1 \cdot 455$	$1 \cdot 48$	0.02
13-14	$4 b-15 b$	0.278	1.470	1.487	$1 \cdot 47$	-0.02
14-15	$15 b-15 c$	0.536	1.419	1.430	$1 \cdot 43$	0
15-18	$15 c-15 d$	0.511	1.421	1.433	1.48	0.05
* Oxygen.				\dagger Nitrogen.		

$12-13$ has $\Delta L=+0.02$ though bond $13-14$ has $\Delta L=0.02$. Thus a small displacement of atom 13 might yield a general improvement in these lengths although the centre marked for this atom seems to be that indicated by the contours of the published Fourier projection. Bonds 9-10 and 15-18 are much too long, although since the latter contains the centre of symmetry only half its length can be measured : it is therefore less reliable. However, too great significance should not be attached to the few large discrepancies, since the X-ray examination was not effected primarily to measure the interatomic distances with very great accuracy.

Conclusion.-Although there is some uncertainty as to the magnitude of the Coulomb and exchange parameters in hetero-compounds, and although all wave-mechanical derivations of bond lengths in molecules as large as those discussed here are approximations, it is reasonable to conclude that, provided there are not more than about two hetero-atoms to fourteen carbon atoms, bond lengths can be predicted to about $\pm 0.03 \AA$ in these large polynuclear compounds. It should therefore be possible to correlate calculated and observed bond lengths while X-ray work is in progress and so help in determining how to adjust molecular models in refining atomic co-ordinates (as with benzanthrone).

The interest of Professor J. M. Robertson, F.R.S., in this work is gratefully acknowledged, while special thanks are offered to Professor C. A. Coulson, F.R.S., and Professor V. Vand for much helpful discussion and advice.

[^0]: * Part I, preceding paper.

